IB Physics Syllabus

Enhanced representation of the official content syllabus from the IB Subject Guide.

[2014 (first assessment 2016) spec]

SL Content Recommended teaching hours: 150

HL Content Recommended teaching hours: +90

"..." means I was too lazy to copy the full thing from the official IB subject guide.

I **bolded** key words/phrases in the descriptions to make it easier to glance over. I also grouped and named subunits by topic wherever appropriate (Topic column).

	Topia	Essential Idea	Understandings	Applications	Cuidanca	DB Refer-
#	Topic	Essential Idea		Applications	Guidance	ence
	r	UNI	T 1: Measuremer	nts & Uncertair	nties	1
1.1	Measure- ments in Physics	Since 1948, the Sys- tème International d'Unités (SI) has been used as the preferred language of science and technology across the globe and reflects current best measure- ment practice.	Fundamental SI Units Scientific Notation & Metric Multipliers Significant Figures Orders of Magnitude Estimation			
1.2	Uncertain- ties & Er- rors	Scientists aim towards designing experiments that can give a "true value" from their measurements, but due to the limited pre- cision in measuring devices, they often quote their results with some form of un- certainty.	Errors: Random & Sys- tematic Uncertainties: Abso- lute, Fractional & Per- centage Error Bars Uncertainty of Gradient & Intercepts			
1.3	Vectors & Scalars	Some quantities have direction and magni- tude, others have magnitude only, and this understanding is the key to correct ma- nipulation of quanti- ties. This sub topic will have broad appli- cations across multiple fields within physics and other sciences	Types of Quantities : Vector & Scalar Combination and Reso- lution of Vectors			
			UNIT 2: M	lechanics		
2.1	Motion	Motion may be de- scribed and analyzed by the use of graphs and equations.	Distance & Displace- ment Speed & Velocity Acceleration Graphs describing mo- tion Equations of motion for Uniform Acceleration Projectile Motion Fluid Resistance & Ter- minal Speed			
2.2	Forces	Classical physics re- quires a force to change a state of mo- tion, as suggested by	Objects as Point Parti- cles Free-body Diagrams			

		Newton in his laws of motion.	Translational Equilib- rium Newton's Laws of Mo- tion Solid Friction				
2.3	Work En- ergy & Power	The fundamental con- cept of energy lays the basis upon which much of science is built.	Types of Energy : Ki- netic, Gravitational po- tential & Elastic poten- tial Work Done as energy transfer Power as Rate of energy transfer Principle of Conserva- tion of Energy Efficiency				
2.4	Momen- tum & Im- pulse	Conservation of mo- mentum is an example of a law that is never violated.	Newton's Second Law expressed in terms of rate of change of mo- mentum Graphs : Impulse—time & Force—time Conservation of Linear Momentum Collisions : Elastic, Ine- lastic & Explosions				
			UNIT 3: 7	Thermal			
3.1	Thermal Concepts	Thermal physics deftly demonstrates the links between the macroscopic measure- ments essential to many scientific models with the microscopic properties that under- lie these models.	Molecular Theory of sol- ids, liquids & gases Temperature (including Absolute Temperature) Internal Energy Specific Heat Capacity Phase Change Specific Latent Heat				
3.2	Modelling a Gas	The properties of ideal gases allow scientists to make predictions of the behavior of real gases.	Pressure Equation of State for an idea gas Kinetic Model of an ideal gas Mole, Molar Mass & the Avogadro Constant Differences between Real and Ideal Gases				
	UNIT 4: Waves						
4.1	Oscilla- tions	A study of oscillations underpins many areas of physics with simple harmonic motion (SHM), a fundamental oscillation that ap- pears in various natu- ral phenomena.	Simple Harmonic Oscil- lations Time Period, Fre- quency, Amplitude, Dis- placement & Phase Dif- ference Conditions for SHM				
4.2	Travelling Waves	There are many forms of waves available to be studied. A common characteristic of all travelling waves is that they carry	Travelling Waves Wavelength, Frequency, Period & Wave Speed				

		energy, but generally the medium through which they travel will not be permanently disturbed	Transverse & Longitudi- nal waves Nature of EM waves			
			Nature of Sound waves			1
4.3	Wave Character- istics	All waves can be de- scribed by the same sets of mathematical ideas. Detailed knowledge of one area leads to the possibility of prediction in an- other.	Wavefronts & Rays Amplitude & Intensity Superposition Polarization			
			Reflection & Refraction			
		Waves interact with	Snell's Law, Critical An- gle & Total Internal Re- flection			
4.4	Wave Be- havior	media and each other in a number of ways that can be unex- posted and wooful	Diffraction through a Single-slit and around objects			
		pected and userui.	Interference Patterns			
			Double-slit interference			
1		When travelling	Nature of Standing			
	Standing	waves meet they can superpose to form	Wave			
4.5	Waves	standing waves in which energy may not	Boundary Conditions			
		be transferred.	Nodes & Antinodes			
		1	UNIT 5: Electi	omagnetism	1	1
5.1	Electric Fields	When charges move an electric current is created.	Charge Electric Field Coulomb's Law Electric Current Direct Current (DC) Potential Difference			
5.2	Heating Effect of Electric Currents	One of the earliest uses for electricity was to produce light and heat. This technology continues to have a major impact on the lives of people around the world	Circuit Diagrams Kirchoff's Circuit Laws Heating effect of current and its consequences Resistance as $R = \frac{V}{I}$ Ohm's Law Resistivity (of material)			
		the world.	Power Dissipation			
5.3	Electric Cells	Electric cells allow us to store energy in a chemical form.	Cells Internal Resistance Secondary Cells Terminal Potential Dif- ference Electromotive Force (EMF)			
5.4	Magnetic Effects of Electric Currents	The effect scientists call magnetism arises when one charge moves in the vicinity of another moving charge.	Magnetic Fields Magnetic Force			
	UNIT 6: Circular Motion & Gravitation					

6.1	Circular Motion	A force applied per- pendicular to its dis- placement can result in circular motion.	Period, Frequency, An- gular Displacement & Angular Velocity Centripetal Force Centripetal Acceleration			
6.2	Newton's Law of Gravita- tion	of gravitational idea of gravitational force acting between two spherical bodies and the laws of mechanics create a model that can be used to calcu- late the motion of planets.	Newton's Law of Gravi- tation Gravitational Field Strength			
		UNIT	7: Atomic Nuclea	ar & Particle P	hysics	
			Discrete Energy & Dis- crete energy Levels Transitions between en- ergy levels Radioactive Decay			
7.1	Discrete Energy & Radioac- tivity	In the microscopic world energy is dis- crete.	Fundamental Forces (and their properties) Alpha Particles, Beta			
			Particles & Gamma Rays			
			Half-life			
			tics of decay particles			
			Isotopes Background Radiation			
		Energy can be re-	Unified Atomic Mass Unit (u)			
7.2	Nuclear Reactions	leased in nuclear de- cays and reactions as a result of the rela- tionship between mass and energy.	Mass Defect & Nuclear Binding Energy			
			Nuclear Fission & Fusion			
		It is believed that all the matter around us is made up of funda- mental particles called	Fermions: Quarks & Leptons & their Anti- particles			
			Hadrons: Baryons & Mesons			
		quarks and leptons. It is known that matter has a hierarchical	Conservation Laws: Charge, Baryon Num-			
	Structuro	structure with quarks making up nucleons,	ber, Lepton Number & Strangeness			
7.3	of Matter	making up nucleons, nucleons making up nuclei, nuclei and elec- trons making up at- oms and atoms mak- ing up molecules. In this hierarchical struc-	Nature and Range of: Strong, Weak & EM Forces			
			Exchange Particles: W,			
		ture, the smallest scale is seen for	Feynman Diagrams			
		quarks and leptons $(10^{-18} \text{ m}).$	(Quark) Confinement			
			The Higgs Boson	- <u>-</u>		
			UNIT 8: Energy	y production		
	Enorgy	The constant need for new energy sources	Specific Energy & Energy Density of fuels			
8.1	Sources	may have a serious ef- fect on the environ- ment. The finite	Sankey Diagrams Primary energy sources			
L			1		1	1

		quantity of fossil fuels and their implication in global warming has led to the develop- ment of alternative sources of energy. This continues to be an area of rapidly changing technological innovation.	Electricity as a second- ary and versatile form of energy Renewable & Non-re- newable sources			
8.2	Thermal Energy Transfer	For simplified model- ling purposes the Earth can be treated as a black-body radia- tor and the atmos- phere treated as a grey-body.	Conduction, Convection & (thermal) Radiation Black-body Radiation Albedo & Emissivity The Solar Constant Greenhouse Effect Energy balance in the Earth surface-atmos- phere system			
		-	AHL 9: Wave	Phenomena	-	
9.1	Simple Harmonic Motion	The solution of the harmonic oscillator can be framed around the variation of ki- netic and potential en- ergy in the system.	The defining equation of SHM Energy Changes			
9.2	Single-slit Diffraction	Single-slit diffraction occurs when a wave is incident upon a slit of approximately the same size as the wave- length.	Nature of single-slit Dif- fraction	Describe effect of slit width on diffraction pattern Determine position of first interference minimum Describe qualitatively sin- gle-slit diffraction patterns produced from white light / range of monochromatic sources	Only rectangular slits need to be considered Diffraction around an ob- ject does not need to be considered (it is in unit 4) Be aware of approximate ratios of intensities of suc- cessive maxima 	
9.3	Interfer- ence	Interference patterns from multiple slits and thin films produce accurately repeatable patterns.	Young's Double-slit Ex- periment Modulation (enveloping) of two-slit interference pattern by one-slit dif- fraction effect Multiple-slit / Diffrac- tion Grating interfer- ence patterns Thin Film Interference	Describe qualitatively two- slit interference patterns, including single-slit modu- lation Sketch & interpret inten- sity graphs of two-slit in- terference patterns Use the diffraction grating equation Describe conditions neces- sary for constructive and destructive interference from thin films, including boundary phase change and effect of refraction		
9.4	Resolution	Resolution places an absolute limit on the extent to which an op- tical or other system can separate images of objects.	Size of a Diffracting Aperture Resolution of simple monochromatic Two- source Systems	Use the Rayleigh criterion for light emitted by two sources diffracted at a sin- gle slit Resolvance of diffraction gratings	Proof of the diffraction grating resolvance equa- tion is not required	
9.5	Doppler Effect	The Doppler effect de- scribes the phenome- non of wave- length/frequency shift when relative motion occurs.	Doppler Effect (for sound & light waves)	Sketch and interpret the Doppler effect for relative motion between source and observer Describe situations were the Doppler effect can be utilized Use frequency/veloc- ity/wavelength change for- mulas	For EM wave, the approximate (non-relativ- istic) equation should be used for all calculations 	
			AHL 10:	Fields		
10.1	Describing Fields	Electric charges and masses each influence the space around	Fields: Gravitational & Electrostatic			

10.2	Fields at Work	them and that influ- ence can be repre- sented through the concept of fields. Similar approaches can be taken in ana- lyzing electrical and gravitational potential problems.	Potentials: Gravita- tional & Electric Field Lines Equipotential Surfaces (Field) Potential & Po- tential Energy Potential Gradient (field strength) Potential Difference Escape Speed Orbital Motion, Orbital Speed & Orbital (poten-			
			tial + kinetic) Energy Forces and Inverse- square Law behavior			
			AHL 11: I	nduction		
11.1	Electro- magnetic Induction	The majority of elec- tricity generated throughout the world is generated by ma- chines that were de- signed to operate us- ing the principles of electromagnetic induc- tion.	Electromotive Force (EMF) Magnetic Flux & Flux Linkage Faraday's Law of Induc- tion Lenz's Law			
11.2	Power Genera- tion & Transmis- sion	Generation and trans- mission of alternating current (ac) electricity has transformed the world.	Alternating Current (AC) Generators Average Power & Root- mean-square (RMS) val- ues of current & voltage Transformers Diode bridges (AC recti- fiers) Half-wave and Full- wave AC Rectification			
11.3	Capaci- tance	Capacitors can be used to store electrical energy for later use.	Capacitance Dielectric Materials Capacitors in Series & Parallel Resistor-capacity (RC) series Circuits Time Constant (τ)			
		AH	IL 12: Quantum &	& Nuclear Phys	ics	
12.1	Interaction with Radi- ation	The microscopic quan- tum world offers a range of phenomena, the interpretation and explanation of which require new ideas and concepts not found in the classical world.	Photons Photoelectric Effect Matter Waves Pair Production & An- nihilation Quantization of angular momentum in the Bohr model for hydrogen The Wave Function Uncertainty Principle for Energy-Time & Po- sition-Momentum Tunneling, Potential Barrier & Factors	Discuss the photoelectric effect experiment and ex- plain which features of the experiment cannot be ex- plained by the classical wave theory of light Solve photoelectric prob- lems both graphically and algebraically (formula) Discuss experimental evi- dence for matter waves, in- cluding electron wave ex- periments State order o magnitude es- timates from the uncer- tainty principle	The order of magnitude estimates from the uncer- tainty principle may in- clude estimates of the en- ergy of the ground state of an atom, the impossi- bility of an electron exist- ing within a nucleus, and the lifetime of an electron in a excited energy state Tunnelling to be treated qualitatively using the idea of continuity of wave functions	$\begin{split} E &= hf \\ E_{\max} &= hf - \Phi \\ E &= -\frac{13.6}{n^2} \text{eV} \\ \text{energy of hydrogen} \\ \text{atom electron shells} \\ mvr &= \frac{nh}{2\pi} \\ \text{angular momentum of} \\ \text{hydrogen atom electron} \\ \mathbf{P}(r) &= \Psi ^2 \Delta V \\ \text{probability that an} \\ \text{electron will be found} \\ \text{within a volume} \\ \Delta x \Delta p \geq \frac{h}{4\pi} \end{split}$

			affecting tunnelling probability		$\Delta E \Delta t \geq \frac{h}{4\pi}$
12.2	Nuclear Physics	The idea of discrete- ness that we met in the atomic world con- tinues to exist in the nuclear world as well.	Rutherford Scattering and Nuclear Radius Nuclear Energy Levels The Neutrino The Law of Radioactive Decay & Decay Con- stant	Describe a scattering exper- iment including location of minimum intensity for the diffracted particles based on their de Broglie wave- length Explain deviations from Rutherford scattering in high energy experiments	
			Option B: E	ngineering	
B.1	Rigid Bod- ies & Ro- tational Dynamics	The basic laws of me- chanics have an exten- sion when equivalent principles are applied to rotation. Actual objects have dimen- sions and they require the expansion of the point particle model to consider the possi- bility of different points on an object having different states of motion and/or dif- ferent velocities.	Torque Momentum of Inertia Rotational & Transla- tional Equilibrium Angular Acceleration Equations of rotational motion for uniform an- gular acceleration Newton's second law ap- plied to angular motion Conservation of Angular Momentum		
B.2	Thermo- dynamics	The first law of ther- modynamics relates the change in internal energy of a system to the energy transferred and the work done. The entropy of the universe tends to a maximum.	First Law of Thermody- namics Second Law of Thermo- dynamics Entropy Cyclic Processes & pV Diagrams Isovolumetric, Isobaric, Isothermal & Adiabatic Processes Carnot Cycle Thermal Efficiency		
B.3 (HL)	Fluids & Fluid Dy- namics	Fluids cannot be mod- elled as point parti- cles. Their distinguish- able response to com- pression from solids creates a set of char- acteristics that require an in depth study.	Density & Pressure Buoyancy & Archime- des' Principle Pascal's Principle Hydrostatic Equilibrium The Idea Fluid Streamlines The Continuity Equa- tion Bernoulli Effect & Equation Stoke's Law & Viscosity Laminar & Turbulent Flow & Reynold's Num- ber		
B.4 (HL)	Forced Vi- brations & Resonance	In the real world, damping occurs in os- cillators and has im- plications that need to be considered	Natural Frequency of vi- bration Q Factor & Dampening Periodic Stimulus & Driving Frequency Resonance		